

Brackets, [], mean concentration or...

MOLARITY (M)

So, " $[H^+] = 1M''$ means...

The concentration of hydrogen ions is 1 M.

- Sour taste
- Reacts with (corrodes) metals to form H2 gas

 $Zn(s) + HCI(aq) \longrightarrow ZnCI_2(aq) + H_2(g)$

• Turns blue litmus paper red

- · Aqueous solutions of acids are electrolytes.
- React with BASES to form salt and water.

NaOH + HCI → NaCl + H₂O

Click here

Click here

Acids react with (corrode) metals to produce hydrogen gas and an ionic compound.

back to properties

← Naming Acids

Binary Acids - H bonded to one nonmetal (HF)

- Begin with $\underline{\text{hydro}}$, use the $\underline{\text{root}}$ of the anion name, add the suffix $\underline{\text{-ic}}$.
 - 1. HBr _____ acid

Ternary Acids - H bonded to a polyatomic ion (H₂SO₄)(a.k.a oxo-acids or oxyacids)

- Begin with **polyatomic** ion without the **suffix**.
- Add suffix _-ic_ if polyatomic ion ended in _-ate_ .
- Add suffix <u>-ous</u> if polyatomic ion ended in <u>-ite</u> .
 - 1. HNO₃ _____ acid
 - 2. HCIO₂ _____ acid

When an acid is mixed with a base, water is produced.

back to properties

← Naming Acids

***Note: when the acid anion contains sulfur or phosphorus...

- the roots are sulfur- and phosphor-, respectively,
- not sulf- and phosph-.
- So H₂SO₄ is sulfuric acid, not sulfic acid.
- And H₃PO₄ is phosphoric acid, not phosphic acid.

← Naming Acids

Organic acids - on carbon chains. Called carboxylic (carb - oxyl - ic) acids - contain a carboxyl group - carbon doubly bound to oxygen and singly bound to hydroxide.

formic acid

acetic acid

Formula	Common Name	Source	IUPAC Name	Melting Point	Boiling Point
HCO3H	formic acid	ants (L. formics)	methanoic acid	84%	101 10
СНуСОуН	acetic acid	vineger (L. acetum)	ethanoic acid	16.610	11610
снуснусоун	propionic acid	milk (Gik. protus prion)	propanoic acid	-20.8 °C	14170
сниснийсойн	bulyric acid	butter (L. butyrum)	butanoic acid	45°C	164 10
снуснуусоун	valeric acid	valerian root	pertanoic acid	-34.5 °C	186 10
он/он/лооч	caproic acid	goels (L. caper)	hexanoic acid	40%	205 °C
снуснуусоун	enanthic acid	vines (Git. cenanthe)	heptanoic acid	-7.5°C	223 °C
снуснуусоун	caprylic acid	goels (L. caper)	octanoic acid	16.3 °C	239 °C
снуснуусоун	pelargonic acid	pelargonium (an herb)	nonanoic acid	12.0 %	253 °C

CH₂(CH₂)₂CO₂H capric acid goals (L. caper) decarnoic acid 31.0 °C 219 °C

← Acids Strength

Binary Acid Strength

• There are 3 STRONG Binary acids

> HCI, HBr, HI

Ternary Acid Strength

• There are 4 STRONG Ternary acids

> H₂SO₄, HNO₃, HCIO₃, HCIO₄

• ALL other ternary acids are weak: H₃PO₄, H₂SO₃, HNO₂, etc...

Acids Strength

STRONG Acids - completely <u>ionize</u>, or dissociate, in water. All the acid breaks into ions. To dissociate is to form IONS!

WEAK Acids - do not ionize completely in solution. Some acids stays intact instead of ionizing.

$$H_2SO_3 + H_2O \longrightarrow H_3O^+ + SO_3^{-2}$$

 $SO_3^{-2} \longrightarrow H_2SO_3$

← Acids Strength

KNOW the STRONG SEVEN

H₂SO₄ HNO₃ HCIO₃ HCIO₄ HCI HBr HI

\ominus	Bases	
_	A compound that produces OH-, hydroxide ions when dissolved in water.	
Phillips	Ex. Milk of Magnesia- Magnesium hydroxide	0
≥	Drain Cleaner - <u>Sodium</u> hydroxide	0
Windex	Window Cleaner - Ammonia, NH ₃ NH ₃ in water makes NH ₄ + and	I OH- !!

Naming Bases

Use the same rules as for **polyatomic** ions (name the cation, then name the anion).

NaOH

1.	NH ₃ - know	n informally as AMMONIA
2.	NaOH -	Sodium hydroxide
3.	Ca(OH) ₂ -	Calcium hydroxide
4.	KOH -	Potassium hydroxide
5.	Mg(OH) ₂ -	Magnesium hydroxide

Base Properties

- Bitter taste
- Feels slippery to the touch.
- Turns red litmus paper blue

- · Aqueous solutions of bases are electrolytes.
- React with ACIDS to form salt and water.

Base Strength

STRONG bases - completely _____ in water.

All bases break into ions.

- All hydroxides with groups <u>1</u> and <u>2</u> metals (except <u>Be</u>) are STRONG hases
- . LiOH, NaOH, KOH, RbOH, CsOH
- Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂

WEAK bases - ionize only slightly.

Some of the base stays intact instead of ionizing.

• All bases NOT LISTED ABOVE AS STRONG like Al(OH), NH3

An Arrhenius ACID ionizes in aqueous solution to produce

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

An Arrhenius BASE contains hydroxide ions and ionizes in water to produce ______.

$$NaOH + H_2O \rightarrow Na^+ + OH^-$$

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

Hydrogen ions are not really "_____" in an acidic solution. Water molecules strip the hydrogen from the anion forming the _____ ion. This happens when an acid is dissolved in H_2O . H_2O and H^+ combine to form H_3O^+ .

2 3

 $[\mbox{H}_3\mbox{O}^*]$ and $[\mbox{H}^*]$ are interchangeable, you will see both used throughout chemistry.

Arrhenius Theory

Practice:

Classify each of the following as an Arrhenius acid or Arrhenius base.

Ca(OH) ₂	Arrhenius BASE	
HBr	Arrhenius ACID	Arrhenius ACID
H ₂ SO ₄	Arrhenius ACID	Arrhenius BASE
LiOH	Arrhenius BASE	

Arrhenius Theory

Disadvantages of Arrhenius Theory

- Can only be applied to reactions that occur in water. And acid-base reaction can occur in gas form.
- Some bases, such as ammonia, do not contain hydroxide ions. They are formed when they contact water.

Bronsted-Lowry Theory

In **Bronsted-Lowry** theory, substances are defined by their ACTIONS. Its all about the exchange of _____.

- The Bronsted-Lowry acid is the reactant that **DONATES** a **proton** (H+)
- The Bronsted-Lowry base is the reactant that ACCEPTS a proton (H+)

The Hydrogen Ion

A hydrogen ion (H+) is a PROTON!

A hydrogen atom contains a single proton and an electron, so when it loses an _____ all that remains is a PROTON.

Hence, hydrogen ions (H*) are often referred to as _____.

Bronsted-Lowry Theory

- The Bronsted-Lowry Conjugate acid is the product that forms after the B-L
 _____ accepts an H+
- The Bronsted-Lowry Conjugate base is the product that forms after the B-L
 has donated an H+

Identify Bronsted Lowry A & B!

Use this mental process to build 2 conjugate pairs between reactants and products.

- Which reactant loses an H*? This is the ______ Its partner in the products (missing an H*) is the conjugate ______. Connect with an arrow.
- 2. Which reactant gains an H+? This is the _____ Its partner in the products (with its new H+) is the conjugate _____. Connect with an arrow.
- 3. Remember: Conjugates are always _____!

Bronsted Lowry Conjugates

A strong acid makes a _____ conjugate base

A weak acid makes a _____ conjugate base

Amphoteric Substances

Amphoteric Substances –act as an ______ in some reactions (accept H+) and as a _____ in others (donate H+).

Examples: H₂O, NH₃

How Protic Is It?

★ Acids can be defined by how many H+ ions they can donate.

Туре	# of H ⁺ to give	Example
0	•	0
•	•	0
·	•	0

Strength vs. Concentration

Compare solutions by type AND relative concentration

0.1M HCI	vs.0.1M HBr
0.01M HCl vs	s. 0.1M HBr
0.1M HCI	vs.0.1M HC ₂ H ₃ O ₂
0.1M H ₃ C ₆ H ₅ O ₇ v	s. 0.01M H ₃ PO ₄

How Basic Is It?

★ Bases can be defined by how many H+ ions they can accept.

Туре	# of H+ to accept	Example
•	•	•
•	•	•
0	•	•

Acidic and Basic Salts

1) Acidic salts – formed when a strong acid and weak base react

Ex: AlCl₃

- Parent acid HCl (strong)
- Parent base Al(OH)₃ (weak)
- Solutions of acidic salts have a pH >5 and <7. When placed in water, form an acidic system.

Acidic and Basic Salts

2) Basic salts – formed when a weak acid and strong base react

Ex: LiC₂H₃O₂

- Parent acid HC₂H₃O₂ (weak)
- Parent base LiOH (strong)
- Solutions of basic salts have a pH >7 and

<9

Acidic and Basic Salts

Salt	Predicted pH	Parent Acid	Parent Base	
NaNO₃				
Fe ₂ (SO ₄) ₃				
Ca ₃ (PO ₃) ₂				

Acidic and Basic Salts

3) Neutral salts – formed when a strong acid and strong base react

Ex: LiCl

- Parent acid HCl (strong)
- Parent base LiOH (strong)
- Solutions of neutral salts have a pH of 7

Self-Ionization of Water

Self-Ionization of Water

Equal concentrations of [H+] and [OH-] are present at 1 x 10^{-7} M at room temperature.

- This is NEUTRAL;
- the total concentration of ions in any aqueous solution is: 1 x 10-14 M2.
- (Multiply the molarities of [H+] and [OH-] together)

This is **K**_w, the **ion product constant** for **w**ater (K means constant)

For pure water $K_w = [H^+] \times [OH^-] = (1 \times 10^{-7} M)^2 = 1 \times 10^{-14} M^2$

Self-Ionization of Water

In any sample of *water*, small but equal amounts of H^+ and OH^- ions will form, creating *conjugate pairs*. This is called the **self** -_____ of water. About 1:2,000,000,000 water molecules does this.

This also happens in pure ammonia (NH₃) and other pure, polar substances.

$$NH_3 + NH_3 \rightarrow$$

Self-Ionization of Water

So... [H+] x [OH-] = 1 x
$$10^{-14}$$
 M²
As [H+] , [OH-] must
As [OH-] , [H+] must

This is an **inverse** relationship between hydrogen and hydroxide ions. When [H₁] dominates you have an acid, with greater [OH₁], a base.

Calculating [H+] and [OH-]

Using the ion product constant for water (Kw), we can solve for the acid or base counterpart of a known value because we are working with an aqueous solution! $K_w = [H^+] \times [OH^-]$

Mathematically, the formula can be manipulated to show:

$$[H^+] = \frac{1 \times 10^{-14} \ M^2}{[OH^-]}$$
 OR... $[OH^-] = \frac{1 \times 10^{-14} \ M}{[H^+]}$

Ex: [OH-]=2.5 x 10-5 M: Calculate [H+]

Ex: [H+]=8.90 x 10-2 M: Calculate [OH-].

Finding pH with Logarithms

Calculating [H+] and [OH-]

In an acid...

 $[H^+] > [OH^-]$ so... 1 x 10° > $[H^+] > 1$ x 10⁻⁷ M In a base ...

[OH-] > [H+] so... 1 x 10° > [OH-] > 1 x 10-7 M

Acidic or basic?

A. [H₃O+] = 1 x 10-3

B. $[H_3O^+] = 1 \times 10^{-11}$

C. [OH-] = 1 x 10-4

pH Scale

- pH range is from 0 to 14.
- pH 0-7 is acidic, 7 is neutral, 7-14 is basic
- Using a calculator, we use the [H+] and the "log" key to generate pH.
- pH is a base 10 logarithm
- · we do this to work on the whole number scale

pH Scale

- A logarithm is the ______ to which 10 must be raised to create a certain number. In this case, the power is pH or pOH.
- log 10^Y = **Y**

```
> ex: log 10^1 = 1 > ex: log 10^{-5} = -5
```

pH is a _____ log, because we want pH to be positive.

pH formula

IF $[H_3O^+] = 1 \times 10^{-8}$, then pH =

pH Scale

$$pH = -log[H^+]$$

To convert from [H+] to pH with most any calculator

IF $[H^+]$ = 3.09 x 10⁻¹⁰M

Press (-) log 3.09 EE (-) 10

pH is 9.510

Sometimes the log key is log₁₀ Use (–) or +/- not "minus"

m-	mr	AC	+	%	
e ^x	10 ^x	7	8	9	0
In	log ₁₀	4	5	6	20

pH Scale

Ex1: Find pH if $[H_3O^+] = 1.0 \times 10^{-4} M$

Ex2: Find pH if $[H_3O^+] = 1 \times 10^{-13} M$

Ex3: Find pH if $[H_3O^+] = 1 \times 10^{-5} M$

Ex4: Find pH if $[OH-] = 1 \times 10^{-5} M$

If the concentration is not a whole number exponent, we must use the formula.

SigFigs and pH

The # of sigfigs in the coefficient of the concentration...

$$[H+] = 3.09 \times 10^{-10}M$$

Is the number of digits to keep AFTER THE DECIMAL in the pH.

pH =
$$-\log (3.09 \times 10^{-10}) = 9.510$$

Ex: Find pH if $[H_3O^+] = 5.0 \times 10^{-6}M$

Ex6: Find pH if $[H_3O^+] = 2.5 \times 10^{-9}M$

pOH Scale

- We can examine the base ion concentration by calculating pOH in the same manner as pH
- pOH is the mirror image of pH. Perfectly opposite.
- pOH range is also from _____ to ____ and fluctuates inversely with pH
- pOH 0 to 7 is basic
- pOH = 7 is neutral
- pOH 7 to 14 is acidic

NEUTRAL

pH and pOH

- Recall: [H+] x [OH-] = 1 x 10-14 M
- Because pH and pOH are also inversely related...

pOH Scale

- Ex. What is the pOH if $[OH] = 1 \times 10^{-4}$
- Ex. What is the pOH if $[OH-] = 1 \times 10^{-3}$
- Ex. What is the pOH if $[H_3O^+] = 1 \times 10^{-7}$
- Ex. What is the pOH if $[H_3O^+] = 1.34 \times 10^{-8}$

Find [H₃O+] and [OH-]

Given pH or pOH, we can determine ______ by using the inverse of the log! To find [H+], set 10 to the power of the –pH. Same idea for pOH

$$[H_3O^+] = 10^{-pH}$$

[OH-] = 10-pOH

To convert FROM pH to [H+] with any calculator

Example: pH = 9.510; to solve, find $[H_3O^+]=10^{-9.51}$

Push "10x" then (-) 9.510 then enter. This gives 3.09 x 10-10.

Find [H₃O⁺] and [OH–]

 $[H_3O^+] = 10^{-pH}$

[OH-] = 10-pOH

Practice:

If the pH of a solution is 4.92, what is the [H₃O⁺]?

1.2 x 10

If the pOH of a solution is 9.29, what is the [OH-]?

5.1 x 10⁻¹

Practice pH = -log[H+] pOH = -log[OH+] $[H_3O^+] = 10^{-pH}$ $[OH^-] = 10^{-pOH}$ $[H^+][OH^-] = 1x10^{14}$ pH + pOH = 14

рН	рОН	[H₃O+]	[он-]	Acid/Base Neutral
4.9	0	0	0	0
0	6.8	0	0	0
0	0	1.39 x 10⁻⁵	0	0
0	0	•	9.85 x 10 ⁻¹¹	0

Magical Box of pH Power

Indicators

- Indicators are substances that change color in solutions of different pH.
- Indicators are usually weak acids.
- They are one color in the acid form and a different color in the base form.
- HIn ≒ H+ In-
- Indicators help determine approximate pH
- Limitations
 - > color is subjective
 - > ranges are narrow sigfigs?
 - > colors can fade

Indicators

Ex: Identify the pH of the substances that turn the following colors in the presence of the listed indicators. Hint: Use a number line!

Indicator	Substance A
Phenolphthalein	Colorless
Methyl Red	Yellow
Bromothymol blue	Blue
рН	

Indicators

Indicator	Color in acid	Transition Color	Color in base	Transition pH range
Bromocresol green	Yellow/green <3.8	None 3.8-5.4	Blue >5.4	3.8-5.4
Phenolphthalein	Colorless <8.2	Pink 8.2-10.2	Red >10.2	8.2-10.2
Bromothymol blue (BTB)	Yellow <6.0	Green 6.0-7.6	Blue >7.6	6.0-7.6
Methyl orange	Red <3.1	Orange 3.1-4.4	Yellow >4.4	3.1-4.4
Methyl red	Red <4.4	Orange 4.4-6.2	Yellow >6.2	4.4-6.2
Phenol red	Yellow <6.8	Orange 6.8-8.4	Red >8.4	6.8-8.4
Litmus	Blue turns red	n/a	Red turns blue	n/a
Universal (BTB + Phenolphthalein+ Methyl Red)	2-red, 3-red/orange 4-orange, 5-yellow/ orange 6-yellow	7-green	8-blue/green 9-blue.gray 10-violet	all

Indicators

Ex: Identify the pH of the substances that turn the following colors in the presence of the listed indicators. Hint: Use a number line!

Indicator	Substance B		
Phenolphthalein	Colorless		
Methyl Red	Red		
Bromothymol blue	Yellow		
рН			

Neutralization

When acids are mixed with bases in equal quantities of hydronium and hydroxide ions, neutralization takes place.

ACID + BASE → WATER + a SALT

2 HBr + Ca(OH)2 \rightarrow H₂O + CaBr₂

Titration

a process in which a **neutralization** reaction is used to determine the **molarity** of an unknown solution.

Neutralization

Practice: Write the balanced chemical equation for these reactions

1. Nitric acid (HNO₃) and potassium hydroxide (KOH)

1 HNO, + 1 KOH → 1 H,O + 1 KNO,

2. Sulfuric acid and magnesium hydroxide

Titration

A known solution, the **titrant**, is dripped carefully into an unknown solution, the **analyte**, containing an indicator. When the new solution is at equivalent concentrations of [H+] and [OH-], the analyte concentration can be calculated.

Titration

- <u>Equivalence point</u> point of <u>neutrality</u> in a titration.
 For an acid/base titration: This is when #moles of [H+] = #moles of [OH-].
- <u>Endpoint</u> point at which an indicator used in a titration changes color
- Choose an indicator that will give color change when you reach equivalence, so...
 - > You want the endpoint to be as close to equivalence as possible!

Titration

weak acid titrated with strong base

Titration

strong acid titrated with strong base

Titration

strong base titrated with strong acid

Titration

weak base titrated with strong acid

Titration

polyprotic weak acid titrated with strong base

Titration

Compare Titration curves

Titration

To solve a titration (molarity of the unknown analyte):

- 1. you must work from a **BALANCED** chemical equation
 - > the mole ratio of acid to base is critical
- 2. Write known quantities below reactants
- 3. Use stoich, starting with the **volume of titrant (in L),** convert to moles of titrant using the known molarity.
- 4. Then convert moles of titrant to moles of analyte using the mole ratio.
- 5. Solve for concentration of the analyte by dividing by volume of analyte (in L) used in the titration.

OR

Titration

Example

46.4mL of unknown molarity HCl are added to 25.0 mL of 1.00 M KOH to reach equivalence in a titration. What is the molarity of the acid?

=

Titration

Practice

2) A 25.0 mL solution of sulfurous acid (H_2SO_3) of unknown molarity is completely neutralized by 18 mL of 1.0 M NaOH.

Į,

What is the pH of the titrant?

What type of salt is formed? What is the estimated pH of the salt solution formed?

Titration

Practice

1) What is the molarity of nitric acid (HNO_3) if 15.0 mL of the solution is completely neutralized by 38.5 mL of 0.150 M NaOH?

Pull

What is the pH of the titrant?

What type of salt is formed?
What is the estimated pH of the salt solution formed?

End

Working with weak acids & bases

*Each H in a diprotic or triprotic acid has a separate K_a value. The same is true for bases (dibasic, tribasic).

Example:
$$K_{a_1}: H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$

 $K_{a_2}: HCO_3^- \rightleftharpoons H^+ + CO_3^{-2}$

Equilibrium constants for weak bases are called K_b values.

$$NH_{3(aq)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH_{(aq)}$$
 $K_b = [NH_4^+][OH^-]$
 $[NH_3]$

The larger the K_b value, the stronger the base

Working with weak acids & bases

Weak acids dissociate incompletely. Equilibrium constants for the dissociation of weak acids are called K_a values (K_b for weak bases). This is the degree to which those acids IONIZE. Strong acids do not have a K_a value because they ionize completely!

For a generic weak acid:

$$HA \rightleftharpoons H^+ + A^ A \text{ means anion!}$$
 $HA \rightleftharpoons H^+ | A^ A \text{ strong acid}$
 $A \text{ stro$

[HCN]

math a tad.

Math with weak acids & bases

- Write the balanced chemical equation
- Set up a reaction diagram (RICE diagram)
- Set up K_a or K_b expression
- Substitute values into K_a or K_b expression
- Solve K_a or K_b expression for X. Use the **5% rule**
- Calculate pH from H+ concentration.

RICE diagram!

Reaction	HA ⇄	H+	+	Α-
Initial				
Change				
Equilibrium				

Math with weak acids & bases

Ex: Calculate the pH of a 0.10 M solution of acetic acid. The K_a for acetic acid is 1.8 x 10⁻⁵.

Math with weak acids & bases

Ex: Calculate the pH of a 0.10 M solution of acetic acid. The K_a for acetic acid is 1.8 x 10⁻⁵.

$$1.8 \times 10^{-5} = \frac{x^2}{0.10} \longrightarrow 1.8 \times 10^{-6} = x^2$$

$$\sqrt{1.8 \times 10^{-6}} = x$$

$$x = 0.001342 = [H^+]$$

$$-\log(0.001342) = pH$$

$$pH = 2.87$$

Math with weak acids & bases

Practice

1) Calculate the pH of a 0.25 M solution of HCN. (K_a is 6.2 x 10⁻¹⁰) RXN

RICE

Percent Dissociation

We can also calculate the percent dissociation of the acid...

$$\% \ dissociation = \frac{amount \ dissociated \ (\frac{mol}{L})}{initial \ concentration \ (\frac{mol}{L})} \ x \ 100 \quad \textit{OR} \dots ---- x \ 100$$

For practice 1) % dissociation =
$$\frac{1.2 \times 10^{-5}}{0.25} \times 100 =$$

Weak base with % dissociation!

1) Find the [OH-] of a 1.0 M solution of methylamine. (K_b = 4.38 x 10⁻⁴) Then calculate the percent dissociation of the base. Methylamine is CH_3NH_2 .

RXN $CH_3NH_2 \leftrightarrows CH_3NH_3^+ + OH^-$

Pull

RICE

End

Titration

Compare Titration curves

