Brackets, [], mean concentration or... MOLARITY (M) So, " $[H^+] = 1M''$ means... The concentration of hydrogen ions is 1 M. - Sour taste - Reacts with (corrodes) metals to form H2 gas $Zn(s) + HCI(aq) \longrightarrow ZnCI_2(aq) + H_2(g)$ • Turns blue litmus paper red - · Aqueous solutions of acids are electrolytes. - React with BASES to form salt and water. NaOH + HCI → NaCl + H₂O Click here Click here Acids react with (corrode) metals to produce hydrogen gas and an ionic compound. back to properties ## ← Naming Acids Binary Acids - H bonded to one nonmetal (HF) - Begin with $\underline{\text{hydro}}$, use the $\underline{\text{root}}$ of the anion name, add the suffix $\underline{\text{-ic}}$. - 1. HBr _____ acid Ternary Acids - H bonded to a polyatomic ion (H₂SO₄)(a.k.a oxo-acids or oxyacids) - Begin with **polyatomic** ion without the **suffix**. - Add suffix _-ic_ if polyatomic ion ended in _-ate_ . - Add suffix <u>-ous</u> if polyatomic ion ended in <u>-ite</u> . - 1. HNO₃ _____ acid - 2. HCIO₂ _____ acid When an acid is mixed with a base, water is produced. back to properties ### ← Naming Acids ***Note: when the acid anion contains sulfur or phosphorus... - the roots are sulfur- and phosphor-, respectively, - not sulf- and phosph-. - So H₂SO₄ is sulfuric acid, not sulfic acid. - And H₃PO₄ is phosphoric acid, not phosphic acid. ### **←** Naming Acids Organic acids - on carbon chains. Called carboxylic (carb - oxyl - ic) acids - contain a carboxyl group - carbon doubly bound to oxygen and singly bound to hydroxide. formic acid acetic acid | Formula | Common Name | Source | IUPAC Name | Melting Point | Boiling Point | |-------------|-----------------|--------------------------|----------------|---------------|----------------------| | HCO3H | formic acid | ants (L. formics) | methanoic acid | 84% | 101 10 | | СНуСОуН | acetic acid | vineger (L. acetum) | ethanoic acid | 16.610 | 11610 | | снуснусоун | propionic acid | milk (Gik. protus prion) | propanoic acid | -20.8 °C | 14170 | | сниснийсойн | bulyric acid | butter (L. butyrum) | butanoic acid | 45°C | 164 10 | | снуснуусоун | valeric acid | valerian root | pertanoic acid | -34.5 °C | 186 10 | | он/он/лооч | caproic acid | goels (L. caper) | hexanoic acid | 40% | 205 °C | | снуснуусоун | enanthic acid | vines (Git. cenanthe) | heptanoic acid | -7.5°C | 223 °C | | снуснуусоун | caprylic acid | goels (L. caper) | octanoic acid | 16.3 °C | 239 °C | | снуснуусоун | pelargonic acid | pelargonium (an herb) | nonanoic acid | 12.0 % | 253 °C | CH₂(CH₂)₂CO₂H capric acid goals (L. caper) decarnoic acid 31.0 °C 219 °C ## ← Acids Strength Binary Acid Strength • There are 3 STRONG Binary acids > HCI, HBr, HI Ternary Acid Strength • There are 4 STRONG Ternary acids > H₂SO₄, HNO₃, HCIO₃, HCIO₄ • ALL other ternary acids are weak: H₃PO₄, H₂SO₃, HNO₂, etc... ### Acids Strength STRONG Acids - completely <u>ionize</u>, or dissociate, in water. All the acid breaks into ions. To dissociate is to form IONS! **WEAK Acids** - do not ionize completely in solution. Some acids stays intact instead of ionizing. $$H_2SO_3 + H_2O \longrightarrow H_3O^+ + SO_3^{-2}$$ $SO_3^{-2} \longrightarrow H_2SO_3$ ### ← Acids Strength KNOW the STRONG SEVEN H₂SO₄ HNO₃ HCIO₃ HCIO₄ HCI HBr HI | \ominus | Bases | | |-----------|--|----------| | _ | A compound that produces OH-, hydroxide ions when dissolved in water. | | | Phillips | Ex. Milk of Magnesia- Magnesium hydroxide | 0 | | ≥ | Drain Cleaner - <u>Sodium</u> hydroxide | 0 | | Windex | Window Cleaner - Ammonia, NH ₃ NH ₃ in water makes NH ₄ + and | I OH- !! | Naming Bases Use the same rules as for **polyatomic** ions (name the cation, then name the anion). NaOH | 1. | NH ₃ - know | n informally as AMMONIA | |----|------------------------|-------------------------| | 2. | NaOH - | Sodium hydroxide | | 3. | Ca(OH) ₂ - | Calcium hydroxide | | 4. | KOH - | Potassium hydroxide | | 5. | Mg(OH) ₂ - | Magnesium hydroxide | ## Base Properties - Bitter taste - Feels slippery to the touch. - Turns red litmus paper blue - · Aqueous solutions of bases are electrolytes. - React with ACIDS to form salt and water. ### Base Strength STRONG bases - completely _____ in water. All bases break into ions. - All hydroxides with groups <u>1</u> and <u>2</u> metals (except <u>Be</u>) are STRONG hases - . LiOH, NaOH, KOH, RbOH, CsOH - Mg(OH)₂, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂ WEAK bases - ionize only slightly. Some of the base stays intact instead of ionizing. • All bases NOT LISTED ABOVE AS STRONG like Al(OH), NH3 An Arrhenius ACID ionizes in aqueous solution to produce $$HCI + H_2O \rightarrow H_3O^+ + CI^-$$ **An Arrhenius BASE** contains hydroxide ions and ionizes in water to produce ______. $$NaOH + H_2O \rightarrow Na^+ + OH^-$$ $$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$ Hydrogen ions are not really "_____" in an acidic solution. Water molecules strip the hydrogen from the anion forming the _____ ion. This happens when an acid is dissolved in H_2O . H_2O and H^+ combine to form H_3O^+ . 2 3 $[\mbox{H}_3\mbox{O}^*]$ and $[\mbox{H}^*]$ are interchangeable, you will see both used throughout chemistry. ### Arrhenius Theory #### Practice: Classify each of the following as an Arrhenius acid or Arrhenius base. | Ca(OH) ₂ | Arrhenius BASE | | |--------------------------------|----------------|----------------| | HBr | Arrhenius ACID | Arrhenius ACID | | H ₂ SO ₄ | Arrhenius ACID | Arrhenius BASE | | LiOH | Arrhenius BASE | | ## Arrhenius Theory Disadvantages of Arrhenius Theory - Can only be applied to reactions that occur in water. And acid-base reaction can occur in gas form. - Some bases, such as ammonia, do not contain hydroxide ions. They are formed when they contact water. ## Bronsted-Lowry Theory In **Bronsted-Lowry** theory, substances are defined by their ACTIONS. Its all about the exchange of _____. - The Bronsted-Lowry acid is the reactant that **DONATES** a **proton** (H+) - The Bronsted-Lowry base is the reactant that ACCEPTS a proton (H+) ## The Hydrogen Ion #### A hydrogen ion (H+) is a PROTON! A hydrogen atom contains a single proton and an electron, so when it loses an _____ all that remains is a PROTON. Hence, hydrogen ions (H*) are often referred to as _____. ## Bronsted-Lowry Theory - The Bronsted-Lowry Conjugate acid is the product that forms after the B-L _____ accepts an H+ - The Bronsted-Lowry Conjugate base is the product that forms after the B-L has donated an H+ #### Identify Bronsted Lowry A & B! Use this mental process to build 2 conjugate pairs between reactants and products. - Which reactant loses an H*? This is the ______ Its partner in the products (missing an H*) is the conjugate ______. Connect with an arrow. - 2. Which reactant gains an H+? This is the _____ Its partner in the products (with its new H+) is the conjugate _____. Connect with an arrow. - 3. Remember: Conjugates are always _____! #### **Bronsted Lowry Conjugates** A strong acid makes a _____ conjugate base A weak acid makes a _____ conjugate base ## **Amphoteric Substances** Amphoteric Substances –act as an ______ in some reactions (accept H+) and as a _____ in others (donate H+). Examples: H₂O, NH₃ ### **How Protic Is It?** ★ Acids can be defined by how many H+ ions they can donate. | Туре | # of H ⁺ to give | Example | |------|-----------------------------|---------| | 0 | • | 0 | | • | • | 0 | | · | • | 0 | ## Strength vs. Concentration Compare solutions by type AND relative concentration | 0.1M HCI | vs.0.1M HBr | |--|---| | 0.01M HCl vs | s. 0.1M HBr | | 0.1M HCI | vs.0.1M HC ₂ H ₃ O ₂ | | 0.1M H ₃ C ₆ H ₅ O ₇ v | s. 0.01M H ₃ PO ₄ | ### **How Basic Is It?** ★ Bases can be defined by how many H+ ions they can accept. | Туре | # of H+ to
accept | Example | |------|----------------------|---------| | • | • | • | | • | • | • | | 0 | • | • | ## **Acidic and Basic Salts** 1) Acidic salts – formed when a strong acid and weak base react Ex: AlCl₃ - Parent acid HCl (strong) - Parent base Al(OH)₃ (weak) - Solutions of acidic salts have a pH >5 and <7. When placed in water, form an acidic system. ### **Acidic and Basic Salts** 2) Basic salts – formed when a weak acid and strong base react Ex: LiC₂H₃O₂ - Parent acid HC₂H₃O₂ (weak) - Parent base LiOH (strong) - Solutions of basic salts have a pH >7 and <9 ## **Acidic and Basic Salts** | Salt | Predicted pH | Parent Acid | Parent Base | | |---|--------------|-------------|-------------|--| | NaNO₃ | | | | | | Fe ₂ (SO ₄) ₃ | | | | | | Ca ₃ (PO ₃) ₂ | | | | | ### **Acidic and Basic Salts** 3) Neutral salts – formed when a strong acid and strong base react Ex: LiCl - Parent acid HCl (strong) - Parent base LiOH (strong) - Solutions of neutral salts have a pH of 7 #### Self-Ionization of Water #### Self-Ionization of Water Equal concentrations of [H+] and [OH-] are present at 1 x 10^{-7} M at room temperature. - This is NEUTRAL; - the total concentration of ions in any aqueous solution is: 1 x 10-14 M2. - (Multiply the molarities of [H+] and [OH-] together) This is **K**_w, the **ion product constant** for **w**ater (K means constant) For pure water $K_w = [H^+] \times [OH^-] = (1 \times 10^{-7} M)^2 = 1 \times 10^{-14} M^2$ #### Self-Ionization of Water In any sample of *water*, small but equal amounts of H^+ and OH^- ions will form, creating *conjugate pairs*. This is called the **self** -_____ of water. About 1:2,000,000,000 water molecules does this. This also happens in pure ammonia (NH₃) and other pure, polar substances. $$NH_3 + NH_3 \rightarrow$$ #### Self-Ionization of Water So... [H+] x [OH-] = 1 x $$10^{-14}$$ M² As [H+] , [OH-] must As [OH-] , [H+] must This is an **inverse** relationship between hydrogen and hydroxide ions. When [H₁] dominates you have an acid, with greater [OH₁], a base. #### Calculating [H+] and [OH-] Using the ion product constant for water (Kw), we can solve for the acid or base counterpart of a known value because we are working with an aqueous solution! $K_w = [H^+] \times [OH^-]$ Mathematically, the formula can be manipulated to show: $$[H^+] = \frac{1 \times 10^{-14} \ M^2}{[OH^-]}$$ OR... $[OH^-] = \frac{1 \times 10^{-14} \ M}{[H^+]}$ Ex: [OH-]=2.5 x 10-5 M: Calculate [H+] Ex: [H+]=8.90 x 10-2 M: Calculate [OH-]. ### Finding pH with Logarithms #### Calculating [H+] and [OH-] #### In an acid... $[H^+] > [OH^-]$ so... 1 x 10° > $[H^+] > 1$ x 10⁻⁷ M In a base ... [OH-] > [H+] so... 1 x 10° > [OH-] > 1 x 10-7 M #### Acidic or basic? A. [H₃O+] = 1 x 10-3 B. $[H_3O^+] = 1 \times 10^{-11}$ C. [OH-] = 1 x 10-4 #### pH Scale - pH range is from 0 to 14. - pH 0-7 is acidic, 7 is neutral, 7-14 is basic - Using a calculator, we use the [H+] and the "log" key to generate pH. - pH is a base 10 logarithm - · we do this to work on the whole number scale #### pH Scale - A logarithm is the ______ to which 10 must be raised to create a certain number. In this case, the power is pH or pOH. - log 10^Y = **Y** ``` > ex: log 10^1 = 1 > ex: log 10^{-5} = -5 ``` pH is a _____ log, because we want pH to be positive. pH formula IF $[H_3O^+] = 1 \times 10^{-8}$, then pH = ### pH Scale $$pH = -log[H^+]$$ #### To convert from [H+] to pH with most any calculator IF $[H^+]$ = 3.09 x 10⁻¹⁰M Press (-) log 3.09 EE (-) 10 pH is 9.510 Sometimes the log key is log₁₀ Use (–) or +/- not "minus" | m- | mr | AC | + | % | | |----------------|-------------------|----|---|---|----| | e ^x | 10 ^x | 7 | 8 | 9 | 0 | | In | log ₁₀ | 4 | 5 | 6 | 20 | | | | | | | | #### pH Scale Ex1: Find pH if $[H_3O^+] = 1.0 \times 10^{-4} M$ Ex2: Find pH if $[H_3O^+] = 1 \times 10^{-13} M$ Ex3: Find pH if $[H_3O^+] = 1 \times 10^{-5} M$ Ex4: Find pH if $[OH-] = 1 \times 10^{-5} M$ If the concentration is not a whole number exponent, we must use the formula. #### SigFigs and pH The # of sigfigs in the coefficient of the concentration... $$[H+] = 3.09 \times 10^{-10}M$$ Is the number of digits to keep AFTER THE DECIMAL in the pH. pH = $$-\log (3.09 \times 10^{-10}) = 9.510$$ Ex: Find pH if $[H_3O^+] = 5.0 \times 10^{-6}M$ Ex6: Find pH if $[H_3O^+] = 2.5 \times 10^{-9}M$ #### pOH Scale - We can examine the base ion concentration by calculating pOH in the same manner as pH - pOH is the mirror image of pH. Perfectly opposite. - pOH range is also from _____ to ____ and fluctuates inversely with pH - pOH 0 to 7 is basic - pOH = 7 is neutral - pOH 7 to 14 is acidic NEUTRAL ### pH and pOH - Recall: [H+] x [OH-] = 1 x 10-14 M - Because pH and pOH are also inversely related... #### pOH Scale - Ex. What is the pOH if $[OH] = 1 \times 10^{-4}$ - Ex. What is the pOH if $[OH-] = 1 \times 10^{-3}$ - Ex. What is the pOH if $[H_3O^+] = 1 \times 10^{-7}$ - Ex. What is the pOH if $[H_3O^+] = 1.34 \times 10^{-8}$ ### Find [H₃O+] and [OH-] Given pH or pOH, we can determine ______ by using the inverse of the log! To find [H+], set 10 to the power of the –pH. Same idea for pOH $$[H_3O^+] = 10^{-pH}$$ [OH-] = 10-pOH To convert FROM pH to [H+] with any calculator **Example:** pH = 9.510; to solve, find $[H_3O^+]=10^{-9.51}$ Push "10x" then (-) 9.510 then enter. This gives 3.09 x 10-10. Find [H₃O⁺] and [OH–] $[H_3O^+] = 10^{-pH}$ [OH-] = 10-pOH Practice: If the pH of a solution is 4.92, what is the [H₃O⁺]? 1.2 x 10 If the pOH of a solution is 9.29, what is the [OH-]? 5.1 x 10⁻¹ Practice pH = -log[H+] pOH = -log[OH+] $[H_3O^+] = 10^{-pH}$ $[OH^-] = 10^{-pOH}$ $[H^+][OH^-] = 1x10^{14}$ pH + pOH = 14 | рН | рОН | [H₃O+] | [он-] | Acid/Base
Neutral | |-----|-----|-------------|--------------------------|----------------------| | 4.9 | 0 | 0 | 0 | 0 | | 0 | 6.8 | 0 | 0 | 0 | | 0 | 0 | 1.39 x 10⁻⁵ | 0 | 0 | | 0 | 0 | • | 9.85 x 10 ⁻¹¹ | 0 | ### Magical Box of pH Power # **Indicators** - Indicators are substances that change color in solutions of different pH. - Indicators are usually weak acids. - They are one color in the acid form and a different color in the base form. - HIn ≒ H+ In- - Indicators help determine approximate pH - Limitations - > color is subjective - > ranges are narrow sigfigs? - > colors can fade # **Indicators** Ex: Identify the pH of the substances that turn the following colors in the presence of the listed indicators. Hint: Use a number line! | Indicator | Substance A | |------------------|-------------| | Phenolphthalein | Colorless | | Methyl Red | Yellow | | Bromothymol blue | Blue | | рН | | # **Indicators** | Indicator | Color in acid | Transition Color | Color in base | Transition pH range | |--|--|--------------------------|--|---------------------| | Bromocresol green | Yellow/green <3.8 | None
3.8-5.4 | Blue >5.4 | 3.8-5.4 | | Phenolphthalein | Colorless <8.2 | Pink
8.2-10.2 | Red
>10.2 | 8.2-10.2 | | Bromothymol blue (BTB) | Yellow <6.0 | Green
6.0-7.6 | Blue
>7.6 | 6.0-7.6 | | Methyl orange | Red
<3.1 | Orange 3.1-4.4 | Yellow
>4.4 | 3.1-4.4 | | Methyl red | Red
<4.4 | Orange
4.4-6.2 | Yellow
>6.2 | 4.4-6.2 | | Phenol red | Yellow
<6.8 | Orange 6.8-8.4 | Red
>8.4 | 6.8-8.4 | | Litmus | Blue turns red | n/a | Red turns
blue | n/a | | Universal
(BTB +
Phenolphthalein+
Methyl Red) | 2-red, 3-red/orange
4-orange, 5-yellow/
orange
6-yellow | 7-green | 8-blue/green
9-blue.gray
10-violet | all | # **Indicators** Ex: Identify the pH of the substances that turn the following colors in the presence of the listed indicators. Hint: Use a number line! | Indicator | Substance B | | | |------------------|-------------|--|--| | Phenolphthalein | Colorless | | | | Methyl Red | Red | | | | Bromothymol blue | Yellow | | | | рН | | | | # **Neutralization** When acids are mixed with bases in equal quantities of hydronium and hydroxide ions, neutralization takes place. ACID + BASE → WATER + a SALT 2 HBr + Ca(OH)2 \rightarrow H₂O + CaBr₂ # **Titration** a process in which a **neutralization** reaction is used to determine the **molarity** of an unknown solution. # **Neutralization** Practice: Write the balanced chemical equation for these reactions 1. Nitric acid (HNO₃) and potassium hydroxide (KOH) 1 HNO, + 1 KOH → 1 H,O + 1 KNO, 2. Sulfuric acid and magnesium hydroxide # **Titration** A known solution, the **titrant**, is dripped carefully into an unknown solution, the **analyte**, containing an indicator. When the new solution is at equivalent concentrations of [H+] and [OH-], the analyte concentration can be calculated. # **Titration** - <u>Equivalence point</u> point of <u>neutrality</u> in a titration. For an acid/base titration: This is when #moles of [H+] = #moles of [OH-]. - <u>Endpoint</u> point at which an indicator used in a titration changes color - Choose an indicator that will give color change when you reach equivalence, so... - > You want the endpoint to be as close to equivalence as possible! # **Titration** ### weak acid titrated with strong base # **Titration** ### strong acid titrated with strong base # **Titration** ### strong base titrated with strong acid **Titration** weak base titrated with strong acid # **Titration** polyprotic weak acid titrated with strong base # **Titration** ### **Compare Titration curves** # **Titration** #### To solve a titration (molarity of the unknown analyte): - 1. you must work from a **BALANCED** chemical equation - > the mole ratio of acid to base is critical - 2. Write known quantities below reactants - 3. Use stoich, starting with the **volume of titrant (in L),** convert to moles of titrant using the known molarity. - 4. Then convert moles of titrant to moles of analyte using the mole ratio. - 5. Solve for concentration of the analyte by dividing by volume of analyte (in L) used in the titration. OR # **Titration** #### Example 46.4mL of unknown molarity HCl are added to 25.0 mL of 1.00 M KOH to reach equivalence in a titration. What is the molarity of the acid? = # **Titration** #### Practice 2) A 25.0 mL solution of sulfurous acid (H_2SO_3) of unknown molarity is completely neutralized by 18 mL of 1.0 M NaOH. Į, #### What is the pH of the titrant? What type of salt is formed? What is the estimated pH of the salt solution formed? # **Titration** #### Practice 1) What is the molarity of nitric acid (HNO_3) if 15.0 mL of the solution is completely neutralized by 38.5 mL of 0.150 M NaOH? Pull #### What is the pH of the titrant? What type of salt is formed? What is the estimated pH of the salt solution formed? # End ## Working with weak acids & bases *Each H in a diprotic or triprotic acid has a separate K_a value. The same is true for bases (dibasic, tribasic). Example: $$K_{a_1}: H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$ $K_{a_2}: HCO_3^- \rightleftharpoons H^+ + CO_3^{-2}$ Equilibrium constants for weak bases are called K_b values. $$NH_{3(aq)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH_{(aq)}$$ $K_b = [NH_4^+][OH^-]$ $[NH_3]$ The larger the K_b value, the stronger the base ## Working with weak acids & bases Weak acids dissociate incompletely. Equilibrium constants for the dissociation of weak acids are called K_a values (K_b for weak bases). This is the degree to which those acids IONIZE. Strong acids do not have a K_a value because they ionize completely! For a generic weak acid: $$HA \rightleftharpoons H^+ + A^ A \text{ means anion!}$$ $HA \rightleftharpoons H^+ | A^ A \text{ strong acid}$ $A stro$ [HCN] math a tad. ## Math with weak acids & bases - Write the balanced chemical equation - Set up a reaction diagram (RICE diagram) - Set up K_a or K_b expression - Substitute values into K_a or K_b expression - Solve K_a or K_b expression for X. Use the **5% rule** - Calculate pH from H+ concentration. RICE diagram! | Reaction | HA ⇄ | H+ | + | Α- | |-------------|------|----|---|----| | Initial | | | | | | Change | | | | | | Equilibrium | | | | | ## Math with weak acids & bases Ex: Calculate the pH of a 0.10 M solution of acetic acid. The K_a for acetic acid is 1.8 x 10⁻⁵. ## Math with weak acids & bases Ex: Calculate the pH of a 0.10 M solution of acetic acid. The K_a for acetic acid is 1.8 x 10⁻⁵. $$1.8 \times 10^{-5} = \frac{x^2}{0.10} \longrightarrow 1.8 \times 10^{-6} = x^2$$ $$\sqrt{1.8 \times 10^{-6}} = x$$ $$x = 0.001342 = [H^+]$$ $$-\log(0.001342) = pH$$ $$pH = 2.87$$ ## Math with weak acids & bases #### **Practice** 1) Calculate the pH of a 0.25 M solution of HCN. (K_a is 6.2 x 10⁻¹⁰) RXN #### RICE ## **Percent Dissociation** We can also calculate the percent dissociation of the acid... $$\% \ dissociation = \frac{amount \ dissociated \ (\frac{mol}{L})}{initial \ concentration \ (\frac{mol}{L})} \ x \ 100 \quad \textit{OR} \dots ---- x \ 100$$ For practice 1) % dissociation = $$\frac{1.2 \times 10^{-5}}{0.25} \times 100 =$$ ______ ## Weak base with % dissociation! 1) Find the [OH-] of a 1.0 M solution of methylamine. (K_b = 4.38 x 10⁻⁴) Then calculate the percent dissociation of the base. Methylamine is CH_3NH_2 . **RXN** $CH_3NH_2 \leftrightarrows CH_3NH_3^+ + OH^-$ Pull RICE # End # **Titration** ### **Compare Titration curves**