Ion Reference

Pre-AP Chemistry

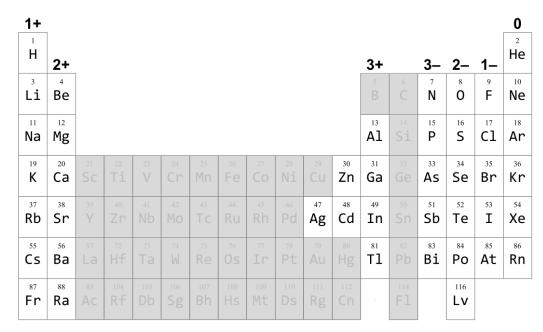
- <u>Ion</u>: An atom or group of atoms that has a charge (+ or -)
- <u>Charge</u>: atoms develop a charge when electrons are lost or gained. Present in ionic substances.
- <u>Oxidation number</u>: atoms take on an oxidation number when electrons are shared unequally in covalent/molecular substances. In an ionic substance, charge = oxidation number.
- <u>Monatomic ion</u>: An ion made from a single atom (example: Na⁺, sodium ion)
- <u>Polyatomic ion</u>: An ion made from more than one atom (example: NO_3^- , nitrate ion)

Common Polyatomic Ions

~to be <u>memorized</u>~

lons with 1+ charge		lons with 1- charge		lons with 2- charge		Ions with 3- charge	
Symbol	Name	Symbol	Name	Symbol	Name	Symbol	Name
NH4 +	ammonium	$C_2H_3O_2^-$	acetate	CO ₃ ²⁻	carbonate	PO3 ³⁻	phosphite
H₃O +	hydronium	C104-	perchlorate	Cr04 ²⁻	chromate	PO4 ³⁻	phosphate
		C103-	chlorate	$Cr_{2}O_{7}^{2-}$	dichromate		
		C102-	chlorite	HPO4 ²⁻	hydrogen phosphate		
		C10-	hypochlorite	0 ₂ ²⁻	peroxide		
Ion with 2+ charge		CN⁻	cyanide	SO ₃ ²⁻	sulfite		
Hg ₂ ²⁺	mercury (I)	HCO3-	hydrogen carbonate (bicarbonate)	S04 ²⁻	sulfate		
		HSO₄ [−]	hydrogen sulfate (bisulfate)			-	
		HSO3 [−]	hydrogen sulfite (bisulfite)				
		H₂PO₄ [−]	dihydrogen phosphate (biphosphate)				
		MnO₄ [−]	permanganate				
		NO ₃ -	nitrate				
		NO_2^-	nitrite	1			
		OH⁻	hydroxide]			

Other Polyatomic Ions


~for reference only; not to be memorized~

Symbol	Name	Symbol	Name	Symbol	Name
F03 ⁻	fluorate	SiF ₆ ²⁻	hexafluorosilicate	As04 ³⁻	arsenate
Br0₃ ⁻	bromate	Te04 ²⁻	tellurate	$C_6H_5O_7^{3-}$	citrate
N_3^-	azide	S ₂ O ₃ ²⁻	thiosulfate	BO3 ³⁻	borate
SCN ⁻	thiocyanate	Si ₂ O ₃ ²⁻	silicate		
IO ₃ -	iodate	C ₂ O ₄ ²⁻	oxalate		
OCN⁻	cyanate	Se04 ²⁻	selenate		
	·	$C_4H_4O_6^{2-}$	tartarate		
		MoO4 ²⁻	molybdate		

Monovalent Monatomic Ions

- <u>Monovalent</u>: Describes ion having only one possible charge (oxidation #)
- <u>Multivalent</u>: Describes a monatomic ion having more than one possible charge (oxidation #)

- Elements in columns of the Periodic Table labeled above always* take on the indicated charge when they become ions. <u>Memorize</u> this pattern!
 - Examples: Calcium ions have a 2+ charge; fluoride ions (from fluorine) have a 1- charge
 - **Exception**: Hydrogen can also form a 1- ion (less common than 1+). In this case, H⁻ is called the *hydride* ion.
- Group 14 elements form multivalent cations and anions.
- <u>Memorize</u> these monovalent ions <u>not</u> in one of the above columns: **Zinc:** Zn²⁺ **Silver:** Ag⁺ **Cadmium:** Cd²⁺
- <u>Memorize the mercury ions</u>: Mercury: Hg₂²⁺ (mercury I) and Hg²⁺ (mercury II)

Memorize Everything Above This Line

Multivalent Monatomic Ions

With the exception of the above 3 metals, other metals <u>not</u> found in one of the above labeled columns of the Periodic Table can be assumed to have variable charge. This means that the charge for these ions is not always the same; they are *multivalent*. <u>Roman numerals</u> are used to indicate the charge in the <u>written chemical name</u> of the ion.

• **Example:** Copper can be 1+ (Cu⁺, copper (I) ion) **or** 2+ (Cu²⁺, copper (II) ion).

The charge on a multivalent ion found in a <u>chemical formula</u>, such as CuCl₂, can be determined quickly and easily. Your teacher will instruct you on determination of charge for these metals in the Chemical Nomenclature unit.

More examples of common multivalent ions:

- Iron: Fe²⁺ (iron II) and Fe³⁺ (iron III)
- Lead: Pb²⁺ (lead II) and Pb⁴⁺ (lead IV)
- Tin: Sn²⁺ (tin II) and Sn⁴⁺ (tin IV)
- Chromium: Cr²⁺ (chromium II) and Cr³⁺ (chromium III)